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A B S T R A C T   

If the system model or the statistical characteristics of noise are inaccurate, the past measurements will directly 
affect the accuracy of current state estimation or even lead to filtering divergence. To overcome above diffi-
culties, a multiple fading factors-based strong tracking variational Bayesian adaptive Kalman filter is proposed. 
Firstly, the inverse Wishart distribution is adopted to model the measurement noise covariance matrix. Secondly, 
the remodified measurement noise covariance matrix and the innovation covariance matrix estimated by 
exponential weighting method are employed to construct the scalar fading factor. Next, the multiple fading 
factors are calculated to correct the predicted error covariance matrix. Finally, the local optimal estimations of 
measurement noise covariance matrix and state are obtained by variational Bayesian approach. The target 
tracking simulations verify that the proposed algorithm has better tracking ability for the predicted error 
covariance matrix and the measurement noise covariance matrix compared with the existing filters.   

1. Introduction 

For the linear Gaussian state space model whose observation noise 
and system noise are stationary, the Kalman filter (KF) is a recursive 
optimal algorithm that employs the minimum mean square error 
(MMSE) as the estimation criterion and has been widely used in 
parameter estimation [1,2]. The KF adopts the estimated state vector at 
previous moment and the measurements at current moment to obtain 
the current state, which is essentially a process of continuous prediction 
and correction [3], and it does not need to store a large amount of his-
torical observation data. Due to its excellent parameter estimation per-
formance, the KF has been widely used in various dynamic systems, such 
as target location and tracking, fault diagnosis and detection, navigation 
and guidance, risk index assessment and so on [4–8]. 

However, in practical applications, the noise statistical characteris-
tics of the state space model are not always stationary [9–13]. The time- 
varying process noise covariance matrix (PNCM) and measurement 
noise covariance matrix (MNCM) usually affect the accuracy of the prior 
information obtained from noise statistics, and the wrong prior infor-
mation will cause a large number of estimation errors or even filtering 
divergence [14,15], accordingly diminish the filtering performance. 

Aiming at these problems, scholars put forward numbers of adaptive 
Kalman filters (AKF), e.g., innovation-based AKF (IAKF), fading AKF 
(FAKF), variational Bayesian-based AKF (VBAKF), strong tracking-based 
variational Bayesian AKF (ST-VBAKF) and so on [16–19]. The IAKF 
solves the problem of imperfect prior information through a filtering 
learning process based on an innovative sequence, which has a signifi-
cant improvement in performance over fixed filters [16]. However, the 
IAKF requires a fairly large data window to obtain a reliable estimation 
of the MNCM, which makes it unsuitable for rapidly changing MNCM. 
The FAKF decreases the weights of current observations by increasing 
the one-step prediction error covariances. However, the calculation 
process of the scalar fading factor is more cumbersome and it has the 
same adjustment ability for each filtering channel, which is not condu-
cive to improve the stability and accuracy of the filter [20]. The VBAKF 
selects the inverse Wishart prior to model the measurement noise, and it 
uses the variational Bayesian (VB) approach to obtain the suboptimal 
estimations of the state vector and the slowly varying MNCM [18]. 
However, the PNCM is set as a fixed value which is not consistent with 
reality [21], thus, the filtering performance of VBAKF will decrease due 
to the inaccurate PNCM. On the basis of VBAKF, Huang et al. [15] 
proposed a novel variational Bayesian-based adaptive Kalman filter (N- 
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VBAKF), which can estimate not only MNCM but also predicted error 
covariance matrix (PECM) in the process of variational iterative recur-
sion, and good results have been achieved in the target tracking problem 
where both PECM and MNCM are slowly varying. However, the N- 
VBAKF also has the disadvantages of high computational complexity 
and time consumption. Tan [19] introduced the suboptimal fading fac-
tor into VBAKF and proposed a ST-VBAKF algorithm, which could 
adaptively track the MNCM in a linear Gaussian system with time- 
varying noise, and effectively overcome the influence of time-varying 
PNCM. The convergence speed and accuracy of the results are 
improved. However, as with FAKF, the scalar fading factor has regula-
tory limitations in ST-VBAKF. 

In complex dynamic systems, the estimation accuracies of state 
variables represented by diagonal elements of PECM are different. 
Therefore, conventional FAKF can no longer meet the demand of accu-
racy since the scalar fading factor has the same ability to adjust the state 
variables. Zhou et al. [22] proposed an extended Kalman filter (EKF) 
with multiple suboptimal fading factors, which determined the weights 
corresponding to the fading factors through prior knowledge, and pro-
vided a new idea for the establishment of multiple fading factors. Geng 
et al. [23] scaled the PECM based on an assumption that the prediction 
residual vectors follow a chi-square distribution, and proposed a novel 
AKF with multiple fading factors for GPS/INS integrated navigation. The 
characteristics of this filter overcome the lack of traditional KF in robust 
estimation. Furthermore, scholars have designed a variety of multiple 
fading factors-based filters according to the characteristics of different 
dynamic systems to make the filters more applicable [24–26]. 

In order to further improve the performance of ST-VBAKF, a multiple 
fading factors-based strong tracking variational Bayesian adaptive filter 
(MST-VBAKF) is proposed. Compared with ST-VBAKF, the improve-
ments of proposed method are reflected in two aspects. Firstly, an 
exponential weighting method based on fading memory is introduced to 
improve the utilization weight of current observations, thus the inno-
vation covariance matrix is estimated more accurately. Secondly, the 
multiple fading factors are employed to promote the tracking ability for 
PECM and the filter robustness is enhanced. Simulation results show that 
the estimation accuracy of the new algorithm is better than ST-VBAKF 
and the other filters. 

The rest of this paper is organized as follows. Section 2 formulates 
the problem and gives the KF solution. Section 3 introduces the forma-
tion process of the MST-VBAKF in detail, including the selection of prior 
distributions for process and measurement noise, the construction of 
multiple fading factors and the derivation of variational measurement 
update. Section 4 performs simulations to verify the proposed filtering 
algorithm, in which the influences of weakening factor and forgetting 
factor on MST-VBAKF and the robustness of different nominal noise 
covariance settings are analyzed, respectively, and then the proposed 
filtering algorithm is compared with the existing filters. Section 5 
summarizes the performance of the new algorithm. 

2. Problem formulation and KF solution 

The state space model of discrete linear stochastic system includes 
state equation and measurement equation, which is defined as [27,28] 

Xk= Fk− 1Xk− 1+wk− 1 (1)  

Lk= HkXk+vk (2)  

where Xk and Lk are the state and measurement vectors, respectively; 
Fk− 1 is the system transition matrix; Hk is the design matrix; wk− 1 and vk 
are the process and measurement noise vectors, respectively. It should 
be noted that the initial state vector X0 is assumed to be the Gaussian 
distribution of mean vector X̂0|0 and covariance matrix P0|0. In addition, 
the statistical information of the noise term satisfies the following con-
ditions [26]: 

E(wk) = 0, Cov(wk,wT
j ) = Qkδkj (3)  

E(vk) = 0, Cov(vk, vTj ) = Rkδkj (4)  

Cov(wk, vTj ) = 0 (5)  

where Qk and Rk are the true process and measurement noise covariance 
matrices, respectively, which are positive definite symmetric matrices; 
δkj represents the Kronecker-delta function equal to the unit quantity at 
k = j and zero elsewhere [29]. 

For the linear Gaussian state space model like Equations (1) and (2), 
the filtering recursive process can be divided into two steps: the pre-
diction and the update [3]. The prediction process is mainly to use the 
time update equation to establish the priori estimation of current state, 
that is, the estimations of current state vector and the error covariance 
matrix are calculated forward in time according to the posterior esti-
mation of the previous state. According to the principle of least squares, 
the predicted state vector X̂k|k− 1 and PECM Pk|k− 1 of KF at time k are 
formulated as [30,31] 

X̂k|k− 1 = Fk− 1 X̂k - 1|k− 1 (6)  

Pk|k− 1 = Fk− 1Pk− 1|k− 1FT
k− 1 + Q̃k− 1 (7)  

where Q̃k− 1 denotes the nominal PNCM. The measurement update 
equation is employed to acquire an improved posterior estimation of the 
current state based on the prior estimation of the prediction process and 
the current measurements. The estimated state vector X̂k|k and error 
covariance matrix Pk|k are given by [31] 

Kk = Pk|k− 1HT
k (HkPk|k− 1HT

k + R̃k)
− 1

(8)  

X̂k|k = X̂k|k− 1 +Kk(Lk − HK X̂k|k− 1) (9)  

Pk|k = (I − KkHk)Pk|k− 1 (10)  

where Kk is the filtering gain matrix; R̃k is the nominal MNCM; I denotes 
the identity matrix. 

In some practical applications, especially for autonomous vehicle 
navigation and positioning system, the system noise statistics may not 
reflect the actual noise statistics on the trajectory [11], that is, Q̃k− 1 and 
R̃k may not be accurate since it is difficult to carry out the high-fidelity 
simulation for operating environment. According to Equations (7) and 
(8), the inaccurate PNCM and MNCM will have a terrible effect on the 
accuracy of KF. 

3. Strong tracking variational Bayesian adaptive Kalman filter 
based on multiple fading factors 

In this section, the multiple fading factors are introduced into VBAKF 
and a novel filtering method named MST-VBAKF is proposed, which can 
adjust the PECM Pk|k− 1 and inaccurate MNCM R̃k simultaneously. The 
selection of prior distribution, the construction of multiple fading factors 
and the variational measurement update process of MST-VBAKF are 
introduced in detail, respectively. 

3.1. Selection of prior distribution 

It can be seen from Beal’s proof [32] that if a suitable prior distri-
bution of the parameter to be estimated is selected in the conjugate- 
exponential (CE) family, the new approximated distribution has the 
same form as the prior distribution but some parameters are changed. In 
view of the prior distribution, the expressions of the relevant parameters 
of the new distribution can be easily obtained. Therefore, in Bayesian 
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theory, the inverse Wishart distribution is usually selected as the con-
jugate prior for the covariance matrix of the Gaussian distribution with 
known mean. The prior distribution of the MNCM Rk based on inverse 
Wishart probability density function (PDF) can be described as [15]: 

p(Rk|L1:k− 1) = IW(Rk; v̂k|k− 1, V̂ k|k− 1) (11)  

IW(Rk; v̂k|k− 1, V̂ k|k− 1) =

⃒
⃒
⃒
⃒V̂ k|k− 1

⃒
⃒
⃒
⃒

v̂k|k− 1
2

|Rk|

−

(
v̂ k|k− 1+d+1

)

2 exp{ − 1
2 tr[

V̂ k|k− 1
Rk

]}

2
v̂ k|k− 1d

2 Γd(
v̂k|k− 1
2 )

(12)  

where IW(⋅) represents the inverse Wishart PDF; v̂k|k− 1 is the degree of 
freedom parameter; V̂k|k− 1 is the inverse scale matrix; d is the dimension 
of Rk; Γd(⋅) denotes multiple gamma function; tr[⋅] denotes the trace of 
the matrix. In addition, if Rk̃IW(Rk; v̂k|k− 1, V̂k|k− 1) and v̂k|k− 1 > d + 1, 

then E(R− 1
k ) = (v̂k|k− 1 − d − 1)V̂

− 1
k|k− 1. 

Assuming that the prior distribution of the joint PDF p(Xk, Rk|L1:k− 1)

of the state vector and the MNCM is the product of the Gaussian dis-
tribution p(Xk|L1:k− 1) and the inverse Wishart distribution p(Rk|L1:k− 1), 
the prediction process can be defined as 

p(Xk, Rk|L1:k− 1) = N(Xk− 1; X̂k|k− 1, Pk|k− 1)IW(Rk; v̂k|k− 1, V̂ k|k− 1) (13)  

where N(⋅) represents the Gaussian PDF; In order to ensure that the prior 
distribution p(Rk|L1:k− 1) follows the inverse Wishart distribution, the 
one-step predicted results of the distribution parameter ̂vk|k− 1 and V̂k|k− 1 

are modified by introducing the change factor ρ as follows [33]: 

v̂k|k− 1 = ρ(v̂k− 1|k− 1 − d − 1)+ d + 1 (14)  

V̂ k|k− 1 = ρV̂ k− 1|k− 1 (15)  

where the changing factor ρ ∈ (0, 1]. When k = 1, v̂0|0 = τ + d+1 
and V̂0|0 = τR̃. In this paper, τ = 3. Accordingly, the time-varying 
MNCM will be changed with a certain probability distribution which 
make posteriori and prior PDFs have the same form. 

3.2. Construction of multiple fading factors 

Due to the memory of KF, the PECM Pk|k− 1 of state vector at time k 
may also contain errors since the PNCM Qk− 1 is inaccurate. The ST- 
VBAKF equates the system uncertainty to the filtering estimation 
error. By introducing the single fading factor to adjust the PECM Pk|k− 1, 
the filtering accuracy is improved. In practical applications [34], how-
ever, the estimation accuracy of each state component may be different, 
and the influence of system uncertainty on the diagonal elements of 
PECM is different too, so that the application of single fading factor is 
limited. 

In order to weaken the influence of inaccurate Pk|k− 1 on the esti-
mation accuracy, make each filtering channel have different adjustment 
capability, and further improve the filtering performance when model 
parameters are unknown or abrupt, multiple suboptimal fading factors 
are given in this paper, whose matrix form is 

Λk = diag(λ1,k, λ2,k,…, λn,k) (16)  

λi,k = μick, i = 1,⋯, n (17)  

where n is the dimension of Pk− 1|k− 1; ck is the scalar fading factor at time 
k, which is calculated by conventional FAKF algorithm. μi represents the 
weight of the fading factor corresponding to the ith state component, 
which can be determined by prior knowledge of the system. When the 
prior knowledge is unavailable, multiple fading factors can be reduced 

to single fading factor, namely μi = 1, i = 1,⋯,n. 
According to the strong tracking theory, ck is described as the 

following form [22,26]: 

ck =

{
c̃, c̃ > 1
1, c̃⩽1 c̃ = tr[Nk]/

∑d

i=1
μiM

ii
k (18)  

Nk = γk − HkQk− 1HT
k − βR̂k (19)  

Mk = HkFk− 1Pk− 1|k− 1FT
k− 1H

T
k (20)  

where γk is the covariance matrix of the output residual vector; β is a 
weakening factor, whose function is to make the estimation result 
smoother; R̂k is the estimated MNCM based on the inverse Wishart 
distribution. 

In general, γk is obtained by windowing method, which is similar to 
Sage filter [35]. In this paper, however, an exponential weighting 
method based on fading memory is adopted. The weighting coefficient is 
assigned according to the law of negative exponential function, and the 
recursive formula of γk at time k is defined as [20]: 

γk =
(1 − ζ)ξkξTk + (ζ − ζk)γk− 1

1 − ζk (21)  

where γ0 = 0; ξk is the residual vector; 0.65⩽ζ⩽0.95 is the forgetting 
factor, whose function is to strengthen the influence of the residual 
sequence and improve the tracking ability of the algorithm. 

Fig. 1 shows the construction of multiple fading factors. Since the 
multiple fading factors Λk focus on controlling the state estimation error 
at time k − 1, accordingly Λk only act on the estimated state vector 
covariance matrix Pk− 1|k− 1 in Equation (7), namely 

P̂k|k− 1 = ΛkFk− 1Pk− 1|k− 1FT
k− 1 + Q̃k− 1 (22)  

3.3. Variational measurement update 

The VB approach is an approximation method, which adopts a 
number of known distributions to represent the complicated posterior 
distribution. In view of the VB statistical theory, the true posterior dis-
tribution p(Xk,Rk|L1:k) can be approximately expressed as the product of 
q(Xk) and q(Rk), where q(Xk) follows the Gaussian distribution and 
q(Rk) follows the inverse Wishart distribution [36]. The Kullback- 
Leibler divergence (KLD) is introduced to describe how close the 
approximate distribution is to the real distribution. The divergence 
function is defined as [36]: 

KLD(q(Xk)q(Rk)||p(Xk,Rk− 1|L1:k)) =
∫

q(Xk)q(Rk) × ln
q(Xk)q(Rk)

p(Xk,Rk− 1|L1:k)
dXkdRk

(23)  

when the KLD in the variational update process is equal to 0, 
q(Xk)q(Rk) = p(Xk, Rk|L1:k), then the optimal estimation of the 
parameter can be obtained. 

According to Beal’s proof [32], the logarithmic expression of the 

Fig. 1. Construction of multiple fading factors.  
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approximate distribution of MNCM in the variational update process is 
given by [15] 

lnq(i+1)(Rk) = − 0.5(d + v̂klk− 1 + 2)ln|Rk|

− 0.5tr[(T(i)
k + V̂ klk− 1)R− 1

k ] + CR
(24)  

where q(i)(⋅) represents the approximate probability distribution of q(⋅)
at the ith iteration; CR is a constant; the covariance matrix T(i)

k is defined 
as 

T(i)
k = E(i)[(Lk − HkXk)(Lk − HkXk)

T
]

= (Lk − Hk X̂
(i)
k )(Lk − Hk X̂

(i)
k )

T
+ HkP(i)

k HT
k

(25) 

It is easy to find that the updated q(i+1)(Rk) follows a new inverse 

Wishart distribution, that is q(i+1)(Rk) = IW(Rk|v̂
(i+1)
k , V̂

(i+1)
k ) whose dis-

tribution parameters are given by 

v̂(i+1)
k = v̂klk− 1 + 1 (26)  

V̂
(i+1)
k = V̂ klk− 1 +T(i)

k (27) 

Similarly, the logarithmic expression of the approximate distribution 
of system state in the variational update process is given by [15] 

lnq(i+1)(Xk) = − 0.5XT
k (P

− 1
k|k− 1 + HT

k E
(i+1)[R− 1

k ]
− 1Hk)Xk

+XT
k (P

− 1
k|k− 1 X̂k|k− 1 + HT

k E
(i+1)[R− 1

k ]
− 1Lk) + CX

(28)  

where E(i+1)[R− 1
k ] = (v̂(i+1)

k − m − 1)(V̂
(i+1)
k )

− 1
, the modified MNCM is 

given by 

R̂
(i+1)
k =

(
E(i+1)[R− 1

k ]
)− 1

=

(

v̂(i+1)
k − m − 1

)− 1

V̂
(i+1)
k (29) 

The mean vector and covariance matrix of the i + 1th iteration are 
given by 

K(i+1)
k = P̂

(i+1)
k|k− 1H

T
k

(
Hk P̂

(i+1)
k|k− 1H

T
k + R̂

(i+1)
k

)− 1
(30)  

X̂
(i+1)
k|k = X̂k|k− 1 +K(i+1)

k (Lk − Hk X̂k|k− 1) (31)  

P(i+1)
k|k = P̂

(i+1)
k|k− 1 − K(i+1)

k Hk P̂
(i+1)
k|k− 1 (32) 

Equations (14)-(15) and Equations (26)-(32) together constitute the 
variational update process of MST-VBAKF algorithm. The Expectation- 
Maximization (EM) method [37] is used to repeatedly update parame-

ters R̂
(i+1)
k and X̂

(i+1)
k|k . The smaller the KL divergence is, the closer the 

product of q(i+1)(Xk) and q(i+1)(Rk) is to p(Xk, Rk|L1:k), and the optimal 

estimations of R̂
(i+1)
k and X̂

(i+1)
k|k are obtained until the variational update 

process is completed. The workflow of MST-VBAKF algorithm is shown 
in Fig. 2, where N represents the number of iterations and K denotes the 
length of simulation time. 

4. The experimental simulation 

Like many existing researches [15,18,19], this paper adopts the 
continuous white noise acceleration model in two-dimensional (2D) 
Cartesian coordinates to verify the performance of the proposed MST- 
VBAKF algorithm, where the PNCM and MNCM of the target change 
slowly with time. It is assumed that the motion process is monitored in 
real time by sensors such as the global navigation satellite systems 
(GNSS). The position and velocity of target are respectively denoted as 
(xk, yk) and (ẋk, ẏk), and the state vector is defined as Xk≜[xk yk ẋk ẏk]

T. 
The time-varying models of true PNCM and MNCM are given by [15,18]: 

Qtrue
k = (6.5+ 0.5cos(

πk
K
))σ2

w

⎡

⎢
⎢
⎢
⎣

Δt3

3
I2

Δt2

2
I2

Δt2

2
I2 ΔtI2

⎤

⎥
⎥
⎥
⎦

(33) 

Fig. 2. Flow chart of MST-VBAKF algorithm.  
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Rtrue
k = (0.1+ 0.05cos(

πk
K
))σ2

v

[
1 0.5
0.5 1

]

(34)  

where K = 2000 s is simulation time; Δt = 1 s is the sampling interval; I 
represents the identity matrix, whose subscript represents the dimension 
of the matrix; σ2

w = 1 m2/s3 and σ2
v = 100 m2 are noise correlation 

parameters. In addition, the nominal PNCM and MNCM are respectively 
set as Qnominal

k = αI4 and Rnominal
k = δI4 in the simulation process, where 

α and δ are prior confidence parameters, which are used to adjust the 
initial fixed noise covariance. 

Other parameters of MST-VBAKF algorithm are set as follows. The 
main function of changing factor ρ ∈ (0, 1] is to ensure that the poste-
riori and prior PDFs have the same forms, which can be set as 
ρ = 1 − exp( − 4) since the noise in the simulation changes slowly [19]. 
In general, filtering convergence can be achieved by performing the VB 
approach more than 6 times, thus the number of variational iterations 
can be set as N = 10 [15]. The nominal PNCM and MNCM in the 
experimental simulation need to be determined according to the prior 
information of the system. Note the improper α and δ will lead to the 
estimation error of the filtering and even the filtering divergence. 
Therefore, in view of the characteristics of the simulation system, the 
prior confidence parameters can be set as α = 1, δ = 100, respec-
tively [15]. The weakening factor β ∈ (0, 1] and forgetting factor ζ ∈

[0.65, 0.95] are adopted to construct the multiple fading factors [19,26]. 
When the MNCM is relatively accurate, β can take a larger value; when 
the MNCM is significantly inaccurate, β can take a smaller value to make 
the estimation result smoother. The forgetting factor affects the esti-
mation accuracy of the PECM. For the system with relatively gentle 
interference, a larger ζ is taken; otherwise, a smaller ζ should be taken to 
ensure the utilization ratio of the innovation sequence. 

See Appendix A for the pseudocode of the proposed filtering algo-
rithm. In the simulation process, the KF with true PNCM and MNCM 
(KFTCM), the KF with nominal PNCM and MNCM (KFNCM) and other 
filters using nominal noise covariance matrix include VBAKF, N-VBAKF 
and ST-VBAKF are used to verify the performance of the proposed MST- 
VBAKF. All algorithms are programmed by MATLAB, in which matrix 
inversion is replaced by matrix division to improve the operation rate. A 
computer with Intel Core i5-5200U (2.20 GHz) central process unit is 
adopted to perform the tests, and its random access memory size is 12.0 
GB. 

4.1. Analysis on the values of weakening and forgetting factors 

In order to explore the appropriate value of the weakening factor β, 
make the filtering estimation result smoother, and enhance the robust-
ness of the filter, M = 500 Monte Carlo simulations are performed to 
compare the performance of the KFTCM, the KFNCM and the MST- 
VBAKF when β is set to different values, in which the forgetting factor 
ζ = 0.85. 

The square root of the normalized Frobenius norms (SRNFNs) are 
selected as the error measures to evaluate the estimation accuracy of 
PECM and MNCM. The SRNFN of the filtering at time k is defined as 
[15]: 

SRNFNk≜

(
1

n2M
∑M

s=1
‖Â

s
k|k− 1 − As

a,k|k− 1‖
2

)1
4

(35)  

where ‖A‖2 represents the trace of the matrix AAT, which can be ob-
tained by summing the main diagonal elements of AAT; Â

s
k|k− 1 denotes 

the estimated PECM or MNCM for running at sth Monte Carlo simula-
tion; As

a,k|k− 1 denotes the true PECM or MNCM at sth Monte Carlo 
simulation. The average SRNFN (ASRNFN) of the whole simulation is 
easily obtained by Equation (35), please refer to [14] for details. The 
ASRNFNs of the PECM and MNCM are recorded as ASRNFNP and 

ASRNFNM, respectively. 
The root mean square errors (RMSEs) of position and velocity are 

selected as the performance indexs to evaluate the filtering state esti-
mation accuracy. The RMSE of the filtering at time k is defined as 

RMSEk≜

(
1
M
∑M

s=1

((

xs
k − x̂s

k

)2

+

(

ys
k − ŷs

k

)2
))1

2

(36)  

where 
(
xs

k, ys
k
)

represents the true position or velocity at sth Monte Carlo 

simulation; 
(

x̂s
k, ŷs

k

)

represents the estimated position or velocity at sth 

Monte Carlo simulation. According to Equation (36), it is easy to get the 
average RMSE (ARMSE) of the whole simulation [15]. The ARMSEs of 
position and velocity are denoted as ARMSEP and ARMSEV , respectively. 

Fig. 3 shows the SRNFNs of PECM and MNCM from KFNCM and 
MST-VBAKF when β = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. As can be seen 
from Fig. 3, the overall performance of SRNFNP from KFNCM shows an 
increasing trend, while the overall performance of SRNFNP from MST- 
VBAKF shows a decreasing trend, and the SRNFNP from MST-VBAKF 
is lower than that from KFNCM after the 50 s. The changes of 
ASRNFNP from MST-VBAKF when β = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 
respectively are not obvious, but the ASRNFNP increases with the 
decrease of β. In the whole simulation process, the SRNFNM from MST- 
VBAKF is obviously lower than that from KFNCM. The smaller the β is, 
the smaller the ASRNFNM from MST-VBAKF is and the faster the 
convergence speed is. When β = 0.3, ASRNFNM from MST-VBAKF is 
the smallest. Obviously, the change of β has the opposite effect on the 
ASRNFNP and ASRNFNM from MST-VBAKF. This is because the varia-
tional Bayesian updated MNCM is adopted to construct multiple fading 
factors, which is a more accurate estimation for MST-VBAKF algorithm, 
but inaccurate prior information will be introduced into PECM due to 
the smaller β. 

Fig. 4 shows the RMSEs of position and velocity from KFTCM, 
KFNCM and MST-VBAKF when β = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. It can 
be seen from Fig. 4 that the RMSEP from MST-VBAKF is significantly 
smaller than that from KFNCM. When β gradually decreases, the 
ARMSEP from MST-VBAKF first decreases and then increases, and is 
closest to that from KFTCM at β = 0.4. Being similar with ARMSEP, the 
ARMSEV from MST-VBAKF is less than that from KFNCM. However, 
when β gradually decreases, the ARMSEV from MST-VBAKF shows a 
decreasing trend in a small range and is the smallest at β = 0.3. In 
general, too large or too small β will reduce the state estimation accuracy 
of MST-VBAKF. Compared with position components, velocity 

Fig. 3. SRNFNs of PECM and MNCM from KFNCM and MST-VBAKF when 
β = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. 
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components are less affected by β since their corresponding fading fac-
tors are given greater weights. 

In order to explore the influence of forgetting factor ζ on the filtering 
performance, KFNCM, KFTCM and MST-VBAKF with different ζ are 
tested separately in the M = 500 Monte Carlo simulations, where the 
weakening factor β = 0.4. Fig. 5 shows the SRNFNs of PECM and 
MNCM from KFNCM and MST-VBAKF when ζ = 0.65,
0.75, 0.85, 0.95. It can be seen from Fig. 5 that, compared with 

KFNCM, the MST-VBAKF has obvious advantages in regulating the 
SRNFN of PECM and can effectively reduce ASRNFNP. When ζ increases, 
the ASRNFNP from MST-VBAKF gradually decreases in a relatively sig-
nificant way. Because the system noise changes gently in the simulation, 
setting ζ as a larger value can augment the utilization ratio of historical 
residual data, thus improve the estimation accuracy of PECM. However, 
the ASRNFNM of MST-VBAKF increases gradually in a small range with ζ 
increase, which indicates that the value of ζ has completely opposite 
influence on PECM and MNCM. Compared with MNCM, the value of ζ 
has a greater impact on the estimation accuracy of PECM. 

Fig. 6 shows the RMSEs of position and velocity from KFTCM, 
KFNCM and MST-VBAKF when ζ = 0.65, 0.75, 0.85, 0.95. As can be 
seen from Fig. 6, both in terms of position and velocity, the MST-VBAKF 
has higher estimation accuracy as compared with KFNCM. When ζ in-
creases, ARMSEP and ARMSEV of MST-VBAKF decrease, and the filtering 
convergence speed slows down to different degrees. However, it is more 

important to reduce the ARMSE of the filtering state vector estimation 
than to speed up the filtering convergence, hence it can be considered to 
set ζ as a larger value in simulations of the following study. 

4.2. Robustness analysis for initial setting of nominal noise covariance 
matrix 

In some applications, the prior confidence parameters may not be 
α = 1 and δ = 100, that is, the setting of nominal noise covariance 
matrix is different from that in this paper. In order to verify the adaptive 
correction capability of MST-VBAKF for nominal process and noise 
covariance matrix when α and δ are taken as different values, a total of 
52 × 52 combinations are simulated when α ∈ [0.1, 500] and δ ∈ [0.1,
500]. The weakening factor β and forgetting factor ζ are set as 0.4 and 

0.85, respectively. Considering the time-consuming problem of simula-
tion and ensuring the persuasive result of simulation, the number of 
Monte Carlo simulations is set as M = 20. Fig. 7 shows the ARMSEs of 
estimated position and velocity from MST-VBAKF. 

As can be seen from Fig. 7, the ARMSEs of position and velocity are 
relatively stable when α ∈ [50, 500] and δ ∈ [50, 500], and the esti-
mated results of position and velocity are closer to the real value. For the 
ARMSEs of the estimated position, when α ∈ [0.1, 50) and δ ∈ [50, 500], 
the ARMSEP decreases first and then increases with decrease of α in the 
simulations under different δ, and the minimum value and maximum 
value are obtained approximately at α = 10 and α = 0.1, 

Fig. 4. RMSEs of the position and velocity from KFTCM, KFNCM and MST- 
VBAKF when β = 0.2, 0.3, 0.4, 0.6, 0.8, 1.0. 

Fig. 5. SRNFNs of the PECM and MNCM from KFNCM and MST-VBAKF when 
ζ = 0.65, 0.75, 0.85, 0.95. 

Fig. 6. RMSEs of the position and velocity from KFTCM, KFNCM and MST- 
VBAKF when ζ = 0.65, 0.75, 0.85, 0.95. 

Fig. 7. The ARMSEs of the position and the velocity when α and δ are set as 
different values 
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respectively; When α ∈ [50, 500] and δ ∈ [0.1, 50), the ARMSEP in-
creases monotonously with decrease of δ in the simulations under 
different α, and get the maximum value at δ = 0.1 approximately. The 
ARMSEs of estimated velocities vary in a manner similar to that of po-
sitions when α and δ are taken as different values. When α = 0.1 and 
δ = 0.1, because the nominal error covariance matrix setting seriously 
deviates from the real error covariance matrix, the ARMSEs of positions 
and velocities both have great estimation errors, and the filtering per-
formance is reduced. The simulation results also show that the varia-
tional Bayesian method can only ensure local convergence. In general, 
for the value of large parts of α and δ, the estimation results of MST- 
VBAKF algorithm can converge to the stable value, and reflect good 
robustness of estimation. 

4.3. Comparison with advanced filtering algorithms 

In order to compare the performance of the proposed method with 
that of the advanced filtering algorithms, the KFTCM, the KFNCM, the 
VBAKF, the N-VBAKF, the ST-VBAKF and the MST-VBAKF are tested 
respectively in M = 500 Monte Carlo simulations. The weakening factor 
and forgetting factor are set as β = 0.4 and ζ = 0.85, respectively. 
Fig. 8 shows the SRNFNs of PECM and MNCM from different filtering 
algorithms, and it can be seen from Fig. 8 that the KFNCM has the lowest 
accuracy due to the lack of real-time estimation and update capability 
for PECM and MNCM. The convergence speed of VBAKF is slow, and the 
SRNFN of MNCM from VBAKF is smaller than that from KFTCM after 
about 730 s. The errors are introduced into the variational update pro-
cess of MNCM since VBAKF lacks the ability to update PECM. The esti-
mation accuracy of MNCM from ST-VBAKF using single fading factor is 
barely better than that of N-VBAKF, but the estimation accuracy of 
PECM from ST-VBAKF is worse. Compared with the ST-VBAKF, the MST- 
VBAKF overcomes the limitation of poor tracking ability of single fading 
factor for multiple variables and has higher estimation accuracy for 
time-varying PECM and MNCM. Table 1 lists the ASRNFNs of PECM and 
MNCM from each filtering algorithm. It can be seen from Table 1 that 
compared with the VBAKF method, the ASRNFNP of PECM and the 
ASRNFNM of MNCM from MST-VBAKF are improved by 16.3% and 
66.3%, respectively. 

Fig. 9 shows the RMSEs of position and velocity from different 
filtering algorithms. It can be seen from Fig. 9 that compared with other 
algorithms, the convergence speed of MST-VBAKF for position or ve-
locity is closer to KFTCM. In addition, the ARMSEP and the ARMSEV are 
also the smallest because the MST-VBAKF has the highest estimation 
accuracy for PECM and MNCM. Table 2 lists the ARMSEs of position and 
velocity from each filtering algorithm. It can be seen from Table 2 that 
MST-VBAKF has the highest estimation accuracy of state vector among 

the six filtering algorithms. Compared with VBAKF, the ARMSEP and the 
ARMSEV from MST-VBAKF are improved by 57.1% and 32.6%, respec-
tively. To summarise, the proposed MST-VBAKF algorithm can estimate 
PECM and MNCM more accurately and has a higher estimation accuracy 
for state vector as compared with existing filters. 

5. Conclusions 

When the PNCM and MNCM of the dynamic system are time-varying, 
the KF is not ideal for parameter estimation accuracy, while existing 
filter algorithms are not able to weaken the influence of inaccurate 
PNCM on filtering performance or have limited ability to weaken. On 
the basis of existing researches, this paper proposes a strong tracking 
variational Bayesian adaptive filtering algorithm with multiple fading 
factors, namely MST-VBAKF, which can adjust the PECM and MNCM 
simultaneously. Simulation results show that the proposed filtering al-
gorithm has a higher estimation accuracy for state vector compared with 
existing filters, and its features are analyzed as follows: 1) Inverse 
Wishart distribution is used to more accurately describe the inaccurate 
noise model and obtain the local optimal estimation of MNCM and state 
vector through the VB approach; 2) Since the updated MNCM and the 
innovation covariance matrix estimated based on the fading memory 
exponential weighting method are adopted to calculate multiple fading 
factors, the estimation accuracy of PECM is significantly improved. Fig. 8. SRNFNs of the PECM and MNCM from different filtering algorithms  

Table 1 
The ASRNFNs of PECM and MNCM from different filtering algorithms.  

Algorithm type ASRNFNP  ASRNFNM  

KFTCM / / 
KFNCM 3.61 7.99 
VBAKF 3.31 7.84 
N-VBAKF 2.92 2.86 
ST-VBAKF 3.53 2.67 
MST-VBAKF 2.77 2.64  

Fig. 9. RMSEs of the position and velocity from different filtering algorithms  

Table 2 
The ARMSEs of position and velocity from different filtering algorithms.  

Algorithm type ARMSEP (m)  ARMSEV (m/s)  

KFTCM 3.75 3.85 
KFNCM 9.74 6.20 
VBAKF 9.12 5.89 
N-VBAKF 4.12 4.31 
ST-VBAKF 4.04 4.14 
MST-VBAKF 3.91 3.97  
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Appendix A. The pseudocode of the proposed MST-VBAKF at time k  

Inputs: X̂k− 1|k− 1, Pk− 1|k− 1, v̂k− 1|k− 1, V̂k− 1|k− 1, Fk− 1, Hk, Lk, Qk− 1, μ, m, n, ζ, β, N, ρ  
Time update: 
1: X̂k|k− 1 = Fk− 1 X̂k− 1|k− 1, ξk = Lk − Hk X̂k|k− 1  

Multiple suboptimal fading factors are introduced: 

2: γk =
(1 − ζ)ξkξT

k + (ζ − ζk)γk− 1

1 − ζk , γ0 = 0  

3: Nk = γk − HkQk− 1HT
k − βR̂k  

4: Mk = HkFk− 1Pk− 1|k− 1FT
k− 1HT

k  

5: ck =

{
c̃, c̃ > 1
1, c̃⩽1 , c̃ = tr[Nk]/

∑d
i=1μiMii

k  

6: λi,k = μick, i = 1,⋯,n  

7: Λk = diag
(

λ1,k , λ2,k,…, λn,k

)

8: P̂k|k− 1 = ΛkFk− 1Pk− 1FT
k|k− 1 + Q̃k− 1  

Variational measurement update: 

9: Initialization: X̂
(0)
k|k = X̂k|k− 1, P(0)

k|k = Pk|k− 1, V̂k|k− 1 = ρV̂k− 1|k− 1, v̂k|k− 1 = ρ
(

v̂k− 1|k− 1 − m − 1
)

+ m + 1  

for i = 0 : N − 1  

10: T(i)
k =

(
Lk − Hk X̂

(i)
k|k

)(
Lk − Hk X̂

(i)
k|k

)T
+ HkP(i)

k|kHT
k  

11: v̂(i+1)
k = v̂klk− 1 + 1, V̂

(i+1)
k = V̂klk− 1 + T(i)

k  

12: R̂
(i+1)
k =

(

v̂(i+1)
k − m − 1

)− 1
V̂

(i+1)
k  

13: K(i+1)
k = P̂

(i+1)
k|k− 1HT

k

(
Hk P̂

(i+1)
k|k− 1HT

k + R̂
(i+1)
k

)− 1  

14: X̂
(i+1)
k|k = X̂k|k− 1 + K(i+1)

k

(
Lk − Hk X̂k|k− 1

)

15: P(i+1)
k|k = P̂

(i+1)
k|k− 1 − K(i+1)

k Hk P̂
(i+1)
k|k− 1  

end for 

16: X̂k|k = X̂
(N)

k|k , Pk|k = P(N)

k|k , v̂k|k = v̂(N)

k , V̂k|k = V̂
(N)

k , R̂k|k = R̂
N
k  

Outputs: X̂k|k, Pk|k, v̂k|k, V̂k|k, P̂k,k− 1, R̂k, γk   

Appendix B. Supplementary material 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.measurement.2021.109139. 
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