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Abstract—Among brain tumors, gliomas are the most common
and aggressive, leading to a very short life expectancy in their
highest grade. Thus, treatment planning is a key stage to improve
the quality of life of oncological patients. Magnetic Resonance
Imaging (MRI) is a widely used imaging technique to assess
these tumors, but the large amount of data produced by MRI
prevents manual segmentation in a reasonable time, limiting the
use of precise quantitative measurements in the clinical practice.
So, automatic and reliable segmentation methods are required;
however, the large spatial and structural variability among brain
tumors make automatic segmentation a challenging problem.
In this paper, we propose an automatic segmentation method
based on Convolutional Neural Networks (CNN), exploring small
3×3 kernels. The use of small kernels allows designing a deeper
architecture, besides having a positive effect against overfitting,
given the fewer number of weights in the network. We also
investigated the use of intensity normalization as a pre-processing
step, which though not common in CNN-based segmentation
methods, proved together with data augmentation to be very
effective for brain tumor segmentation in MRI images. Our pro-
posal was validated in the Brain Tumor Segmentation Challenge
2013 database (BRATS 2013), obtaining simultaneously the first
position for the complete, core, and enhancing regions in Dice
Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge
data set. Also, it obtained the overall first position by the online
evaluation platform. We also participated in the on-site BRATS
2015 Challenge using the same model, obtaining the second place,
with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for
the complete, core, and enhancing regions, respectively.

Index Terms—Magnetic Resonance Imaging, Glioma, Brain
Tumor, Brain Tumor Segmentation, Deep Learning, Convolu-
tional Neural Networks

I. INTRODUCTION

Gliomas are the brain tumors with the highest mortality
rate and prevalence [1]. These neoplasms can be graded into
Low Grade Gliomas (LGG) and High Grade Gliomas (HGG),
with the former being less aggressive and infiltrative than the
latter [1], [2]. Even under treatment, patients do not survive
on average more than 14 months after diagnosis [3]. Current
treatments include surgery, chemotherapy, radiotherapy, or a
combination of them [4]. MRI is especially useful to assess
gliomas in clinical practice, since it is possible to acquire MRI
sequences providing complementary information [1].
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The accurate segmentation of gliomas and its intra-tumoral
structures is important not only for treatment planning, but also
for follow-up evaluations. However, manual segmentation is
time-consuming and subjected to inter- and intra-rater errors
difficult to characterize. Thus, physicians usually use rough
measures for evaluation [1]. For these reasons, accurate semi-
automatic or automatic methods are required [1], [5]. However,
it is a challenging task, since the shape, structure, and location
of these abnormalities are highly variable. Additionally, the
tumor mass effect change the arrangement of the surrounding
normal tissues [5]. Also, MRI images may present some
problems, such as intensity inhomogeneity [6], or different
intensity ranges among the same sequences and acquisition
scanners [7].

In brain tumor segmentation, we find several methods that
explicitly develop a parametric or non-parametric probabilistic
model for the underlying data. These models usually include
a likelihood function corresponding to the observations and a
prior model. Being abnormalities, tumors can be segmented as
outliers of normal tissue, subjected to shape and connectivity
constrains [8]. Other approaches rely on probabilistic atlases
[9]–[11]. In the case of brain tumors, the atlas must be
estimated at segmentation time, because of the variable shape
and location of the neoplasms [9]–[11]. Tumor growth models
can be used as estimates of its mass effect, being useful
to improve the atlases [10], [11]. The neighborhood of the
voxels provides useful information for achieving smoother
segmentations through Markov Random Fields (MRF) [9].
Zhao at al. [5] also used a MRF to segment brain tumors after
a first oversegmentation of the image into supervoxels, with
a histogram-based estimation of the likelihood function. As
observed by Menze et al. [5], generative models generalize
well in unseen data, but it may be difficult to explicitly
translate prior knowledge into an appropriate probabilistic
model.

Another class of methods learns a distribution directly from
the data. Although a training stage can be a disadvantage,
these methods can learn brain tumor patterns that do not
follow a specific model. This kind of approaches commonly
consider voxels as independent and identically distributed [12],
although context information may be introduced through the
features. Because of this, some isolated voxels or small clusters
may be mistakenly classified with the wrong class, some-
times in physiological and anatomically unlikely locations. To
overcome this problem, some authors include information of
the neighborhood by embedding the probabilistic predictions
of the classifier into a Conditional Random Field [12]–[15].
Classifiers such as Support Vector Machines [12], [13] and,
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more recently, Random Forests (RF) [14]–[21] were success-
fully applied in brain tumor segmentation. The RF became
very used due to its natural capability in handling multi-class
problems and large feature vectors. A variety of features were
proposed in the literature: encoding context [15], [16], [21],
first-order and fractals-based texture [14], [15], [18], [21],
[22], gradients [14], [15], brain symmetry [14], [15], [19], and
physical properties [19]. Using supervised classifiers, some
authors developed other ways of applying them. Tustison et al.
[19] developed a two-stage segmentation framework based on
RFs, using the output of the first classifier to improve a second
stage of segmentation. Geremia et al. [20] proposed a Spatially
Adaptive RF for hierarchical segmentation, going from coarser
to finer scales. Meier et al. [23] used a semi-supervised RF to
train a subject-specific classifier for post-operative brain tumor
segmentation.

Other methods known as Deep Learning deal with repre-
sentation learning by automatically learning an hierarchy of
increasingly complex features directly from data [24]. So, the
focus is on designing architectures instead of developing hand-
crafted features, which may require specialized knowledge
[25]. CNNs have been used to win several object recognition
[26], [27] and biological image segmentation [28] challenges.
Since a CNN operates over patches using kernels, it has the
advantages of taking context into account and being used with
raw data. In the field of brain tumor segmentation, recent
proposals also investigate the use of CNNs [29]–[35]. Zikic
et al. [29] used a shallow CNN with two convolutional layers
separated by max-pooling with stride 3, followed by one
fully-connected (FC) layer and a softmax layer. Urban et al.
[30] evaluated the use of 3D filters, although the majority
of authors opted for 2D filters [31]–[35]. 3D filters can take
advantage of the 3D nature of the images, but it increases the
computational load. Some proposals evaluated two-pathway
networks to allow one of the branches to receive bigger patches
than the other, thus having a larger context view over the image
[31], [32]. In addition to their two-pathway network, Havaei
et al. [32] built a cascade of two networks and performed a
two-stage training, by training with balanced classes and then
refining it with proportions near the originals. Lyksborg et al.
[33] use a binary CNN to identify the complete tumor. Then,
a cellular automata smooths the segmentation, before a multi-
class CNN discriminates the sub-regions of tumor. Rao et al.
[34] extracted patches in each plane of each voxel and trained
a CNN in each MRI sequence; the outputs of the last FC
layer with softmax of each CNN are concatenated and used
to train a RF classifier. Dvor̆ák and Menze [35] divided the
brain tumor regions segmentation tasks into binary sub-tasks
and proposed structured predictions using a CNN as learning
method. Patches of labels are clustered into a dictionary of
label patches, and the CNN must predict the membership of
the input to each of the clusters.

In this paper, inspired by the groundbreaking work of Si-
monyan and Zisserman [36] on deep CNNs, we investigate the
potential of using deep architectures with small convolutional
kernels for segmentation of gliomas in MRI images. Simonyan
and Zisserman proposed the use of small 3× 3 kernels to
obtain deeper CNNs. With smaller kernels we can stack more

convolutional layers, while having the same receptive field of
bigger kernels. For instance, two 3×3 cascaded convolutional
layers have the same effective receptive field of one 5×5 layer,
but fewer weights [36]. At the same time, it has the advantages
of applying more non-linearities and being less prone to
overfitting because small kernels have fewer weights than
bigger kernels [36]. We also investigate the use of the intensity
normalization method proposed by Nyúl et al. [7] as a pre-
processing step that aims to address data heterogeneity caused
by multi-site multi-scanner acquisitions of MRI images. The
large spatial and structural variability in brain tumors are also
an important concern that we study using two kinds of data
augmentation.

The remainder of this paper is organized as follows. In
Section II, the proposed method is presented. The databases
used for evaluation and the experimental setup are detailed in
Section III. Results are presented and discussed in Section IV.
Finally, the main conclusions are presented in Section V.

II. METHOD

Fig. 1 presents an overview of the proposed approach. There
are three main stages: pre-processing, classification via CNN
and post-processing.

A. Pre-processing

MRI images are altered by the bias field distortion. This
makes the intensity of the same tissues to vary across the
image. To correct it, we applied the N4ITK method [6].
However, this is not enough to ensure that the intensity
distribution of a tissue type is in a similar intensity scale
across different subjects for the same MRI sequence, which
is an explicit or implicit assumption in most segmentation
methods [37]. In fact, it can vary even if the image of the
same patient is acquired in the same scanner in different time
points, or in the presence of a pathology [7], [38]. So, to
make the contrast and intensity ranges more similar across
patients and acquisitions, we apply the intensity normalization
method proposed by Nyúl et al. [7] on each sequence. In this
intensity normalization method, a set of intensity landmarks
IL = {pc1, ip10 , ip20 , · · · , ip90 , pc2} are learned for each sequence
from the training set. pc1 and pc2 are chosen for each MRI
sequence as described in [38]. ipl represents the intensity at
the lth percentile. After training, the intensity normalization is
accomplished by linearly transforming the original intensities
between two landmarks into the corresponding learned land-
marks. In this way, the histogram of each sequence is more
similar across subjects.

After normalizing the MRI images, we compute the mean
intensity value and standard deviation across all training
patches extracted for each sequence. Then, we normalize
the patches on each sequence to have zero mean and unit
variance1.

1The mean and standard deviation computed in the training patches are
used to normalize the testing patches.
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Fig. 1: Overview of the proposed method.

B. Convolutional Neural Network
CNN were used to achieve some breakthrough results

and win well-known contests [26], [27]. The application of
convolutional layers [39], [40] consists in convolving a signal
or an image with kernels to obtain feature maps. So, a unit
in a feature map is connected to the previous layer through
the weights of the kernels. The weights of the kernels are
adapted during the training phase by backpropagation, in
order to enhance certain characteristics of the input. Since
the kernels are shared among all units of the same feature
maps, convolutional layers have fewer weights to train than
dense FC layers, making CNN easier to train and less prone to
overfitting. Moreover, since the same kernel is convolved over
all the image, the same feature is detected independently of the
location – translation invariance. By using kernels, information
of the neighborhood is taken into account, which is an useful
source of context information [25], [39], [40]. Usually, a non-
linear activation function is applied on the output of each
neural unit.

If we stack several convolutional layers, the extracted fea-
tures become more abstract with the increasing depth. The first
layers enhance features such as edges, which are aggregated
in the following layers as motifs, parts, or objects [25].

The following concepts are important in the context of
CNN:

a) Initialization: it is important to achieve convergence.
We use the Xavier initialization [41]. With this, the activations
and the gradients are maintained in controlled levels, otherwise
back-propagated gradients could vanish or explode.

b) Activation Function: it is responsible for non-linearly
transforming the data. Rectifier linear units (ReLU), defined
as

f (x) = max(0,x), (1)

were found to achieve better results than the more classical
sigmoid, or hyperbolic tangent functions, and speed up training
[26], [42]. However, imposing a constant 0 can impair the
gradient flowing and consequent adjustment of the weights
[43]. We cope with these limitations using a variant called
leaky rectifier linear unit (LReLU) [43] that introduces a small
slope on the negative part of the function. This function is
defined as

f (x) = max(0,x)+α min(0,x) (2)

where α is the leakyness parameter. In the last FC layer, we
use softmax.

c) Pooling: it combines spatially nearby features in the
feature maps. This combination of possibly redundant features
makes the representation more compact and invariant to small
image changes, such as insignificant details; it also decreases
the computational load of the next stages. To join features it
is more common to use max-pooling or average-pooling [25].

d) Regularization: it is used to reduce overfitting. We
use Dropout [44], [45] in the FC layers. In each training
step, it removes nodes from the network with probability p.
In this way, it forces all nodes of the FC layers to learn better
representations of the data, preventing nodes from co-adapting
to each other. At test time, all nodes are used. Dropout can
be seen as an ensemble of different networks and a form of
bagging, since each network is trained with a portion of the
training data [44], [45].

e) Data Augmentation: it can be used to increase the size
of training sets and reduce overfitting [26]. Since the class
of the patch is obtained by the central voxel, we restricted
the data augmentation to rotating operations. Some authors
also consider image translations [26], but for segmentation
this could result in attributing a wrong class to the patch.
So, we increased our data set during training by generating
new patches through the rotation of the original patch. In our
proposal, we used angles multiple of 90◦, although another
alternative will be evaluated.

f) Loss Function: it is the function to be minimized
during training. We used the Categorical Cross-entropy,

H =− ∑
j∈voxels

∑
k∈classes

c j,k log(ĉ j,k) (3)

where ĉ represents the probabilistic predictions (after the
softmax) and c is the target.

In the next subsections, we discuss the architecture and
training of our CNN.

1) Architecture: We aim at a reliable segmentation method;
however, brain tumors present large variability in intra-tumoral
structures, which makes the segmentation a challenging prob-
lem. To reduce such complexity, we designed a CNN and tuned
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the intensity normalization transformation for each tumor
grade – LGG and HGG.

The proposed architectures are presented in Tables I and
II2. The architecture used for HGG is deeper than the one
for LGG, because going deeper did not improve results in
the latter. To go deeper, one must include more layers with
weights, which may increase overfitting, given the smaller
training set of LGG. This is supported by the need of setting
Dropout with p = 0.5 in LGG, while it is p = 0.1 in HGG,
since the database used for evaluation contained more HGG
then LGG cases. Additionally, the appearance and patterns are
different in HGG and LGG. Since we are doing segmentation,
we need a precise sense of location. Pooling can be positive to
achieve invariance and to eliminate irrelevant details, however,
it can also have a negative effect by eliminating important
details. We apply overlapping pooling with 3× 3 receptive
fields and 2× 2 stride to keep more information of location.
In the convolutional layers the feature maps are padded before
convolution, so that the resulting feature maps could maintain
the same dimensions. In the case of HGG there are 2,118,213
weights to train, while in LGG it lowers to 1,933,701 weights
because it has two less convolutional layers. All sequences
were used as input. LReLU is the activation function in all
layers with weights, with the exception of the last that uses
softmax. Dropout was used only in the FC layers.

TABLE I: Architecture of the HGG CNN. In inputs, the first
dimension refers to the number of channels and the next two
to the size of the patch, or feature maps. Conv. refers to
convolutional layers and Max-pool. to max-pooling.

HGG
Type Filter size Stride # filters FC units Input

Layer 1 Conv. 3×3 1×1 64 - 4×33×33
Layer 2 Conv. 3×3 1×1 64 - 64×33×33
Layer 3 Conv. 3×3 1×1 64 - 64×33×33
Layer 4 Max-pool. 3×3 2×2 - - 64×33×33
Layer 5 Conv. 3×3 1×1 128 - 64×16×16
Layer 6 Conv. 3×3 1×1 128 - 128×16×16
Layer 7 Conv. 3×3 1×1 128 - 128×16×16
Layer 8 Max-pool. 3×3 2×2 - - 128×16×16
Layer 9 FC - - - 256 6272

Layer 10 FC - - - 256 256
Layer 11 FC - - - 5 256

TABLE II: Architecture of the LGG CNN. In inputs, the first
dimension refers to the number of channels and the next two
to the size of the patch, or feature maps. Conv. refers to
convolutional layers and Max-pool. to max-pooling.

LGG
Type Filter size Stride # filters FC units Input

Layer 1 Conv. 3×3 1×1 64 - 4×33×33
Layer 2 Conv. 3×3 1×1 64 - 64×33×33
Layer 3 Max-pool. 3×3 2×2 - - 64×33×33
Layer 4 Conv. 3×3 1×1 128 - 64×16×16
Layer 5 Conv. 3×3 1×1 128 - 128×16×16
Layer 6 Max-pool. 3×3 2×2 - - 128×16×16
Layer 7 FC - - - 256 6272
Layer 8 FC - - - 256 256
Layer 9 FC - - - 5 256

2We also provide graphical representations in the online Supplementary
Materials.

2) Training: To train the CNN the loss function must be
minimized, but it is highly non-linear. We use Stochastic Gra-
dient Descent as an optimization algorithm, which takes steps
proportionally to the negative of the gradient in the direction of
local minima. Nevertheless, in regions of low curvature it can
be slow. So, we also use Nesterov‘s Accelerated Momentum to
accelerate the algorithm in those regions. The momentum ν is
kept constant, while the learning rate ε was linearly decreased,
after each epoch. We consider an epoch as a complete pass
over all the training samples.

C. Post-processing

Some small clusters may be erroneously classified as tumor.
To deal with that, we impose volumetric constrains by remov-
ing clusters in the segmentation obtained by the CNN that are
smaller than a predefined threshold τVOL.

III. EXPERIMENTAL SETUP

A. Database

The proposed method was validated on the BRATS 2013
and 2015 databases3 [5], [46]. For every patient in BRATS
there are four MRI sequences available: T1-weighted (T1), T1
with gadolinium enhancing contrast (T1c), T2-weighted (T2)
and FLAIR. The images of each subject were already aligned
with the T1c and skull stripped. BRATS 2013 contains three
data sets: Training, Leaderboard and Challenge, comprising
65 MR scans from different patients — histological diagno-
sis: astrocytomas or oligoastrocytomas, LGG, and anaplastic
astrocytomas and glioblastoma multiforme tumors, HGG. The
Training set contains 20 HGG and 10 LGG, with manual
segmentations available. The Leaderboard set is composed by
21 HGG and 4 LGG, while the Challenge set includes 10
HGG. Metrics for these two sets are computed through the
online evaluation platform [47], given that the manual segmen-
tations are not publicly available. In BRATS 2015, the Training
set comprises 220 and 54 acquisitions of HGG and LGG,
respectively. The Challenge set contains 53 cases, including
both grades. In this case, the evaluation metrics were computed
by the organizers of the challenge. The manual segmentation
identifies four types of intra-tumoral classes: necrosis, edema,
non-enhancing, and enhancing tumor. However, the evaluation
is performed for the enhancing tumor, the core (necrosis +
non-enhancing tumor + enhancing tumor), and the complete
tumor (all classes combined).

B. Setup

Some of the hyperparameters of the architectures were
shown in Tables I and II. The remaining are depicted in Table
III. All hyperparameters were found using the validation set,
consisting of one subject in both HGG and LGG.

We approached brain tumor segmentation as a multi-class
classification problem with 5 classes (normal tissue, necrosis,
edema, non-enhancing, and enhancing tumor). However, in
brain tumor, the classes are imbalanced. So, we used all sam-
ples from the underrepresented classes and randomly sampled

3The data set of BRATS 2014 is not currently available.
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TABLE III: Hyperparameters of the proposed method.

Stage Hyperparameter Value

Initialization bias 0.1

weights Xavier

Leaky ReLU α 0.333

Dropout p – HGG 0.1

p – LGG 0.5

Training

epochs – HGG 20

epochs – LGG 25

ν 0.9

Initial ε 0.003

Final ε 0.00003

Batch 128

Post-processing τVOL – HGG 10000

τVOL – LGG 3000

from the other. Additionally, the number of samples of necrosis
and enhancing tumor is small in the LGG training set. To
cope with that, we also normalized the intensities of HGG
using the landmarks calculated with LGG to extract samples
of those classes from HGG to use as training samples in
LGG. To train the CNNs for HGG and LGG, we extracted
around 450,000 and 335,000 patches, respectively. Note that,
with data augmentation, we end up having roughly four times
these numbers as effective training samples. Approximately
40% of these patches represent normal tissue in HGG and
50% in LGG. The learning rate was linearly decreased after
each epoch during the training stage.

The CNNs were developed using Theano [48], [49] and
Lasagne [50]. The trained architectures are available online4.

C. Evaluation

The evaluation of the segmentations considered three met-
rics: Dice Similarity Coefficient (DSC), Positive Predictive
Value (PPV) and Sensitivity. The DSC [51] measures the
overlap between the manual and the automatic segmentation.
It is defined as,

DSC =
2T P

FP+2T P+FN
, (4)

where TP, FP and FN are the numbers of true positive, false
positive and false negative detections, respectively. PPV is a
measure of the amount of FP and TP, defined as,

PPV =
T P

T P+FP
. (5)

Finally, Sensitivity is useful to evaluate the number of TP and
FN detections, being defined as

Sensitivity =
T P

T P+FN
. (6)

4http://www.dei.uminho.pt/pessoas/csilva/brats cnn/

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we analyze the effect of key components
and the choice of the plane over which we extract patches on
the performance of the proposed method. Also, we compare
our method with the state of the art using the same database,
including also methods based on deep learning for brain
tumor segmentation. Lastly, we report our result during the
participation on BRATS Challenge 2015.

A. Validation of Key Components

We evaluate the effect of each component on the proposed
approach by studying the improvement in performance. This
increment in performance is evaluated as the mean gain in the
metrics (DSC, PPV and Sensitivity), which is obtained in the
following way: we compute all metrics using the proposed
method for the data sets; then, we remove or substitute the
component under study, and compute the metrics for this
alternative method. Finally, we subtract each metric for the
two systems and calculate the average across the subtractions,
obtaining the mean gain, µgain. The metric of each experiment
is reported in Table IV, Fig. 2 and 3 present the boxplots
in the Leaderboard and Challenge data set, respectively, and
in Fig. 4 we exemplify the effect of the experiments in the
segmentation of tumor in two patients (HGG and LGG). In the
experiments, we maintained the hyperparameters presented in
Table III as possible to preserve the same conditions5. Also,
only the images in the Training data set are used in the learning
phase of the intensity normalization method. All tests in this
section use patches extracted from planes perpendicular to the
Axial axis of the MRI image, except in subsection IV-B, where
it is evaluated the choice of the best axis.

a) Pre-processing: The effect of the pre-processing on
the segmentation was evaluated by comparing with an alterna-
tive method described in [19]. We chose this method, because
it is also utilized in a CNN-based brain tumor segmentation
method [32]. This alternative pre-processing starts by applying
a 1% winsorizing over the intensities within the brain. Then,
the N4ITK is used to correct the bias field in each MRI
sequence and the intensities are linearly transformed to [0,1].
Finally, we normalized each sequence to have zero mean and
unit variance. During the training stage of the CNN with this
pre-processing for LGG, we found to be necessary to decrease
the initial and final learning rate to 3×10−5 and 3×10−7,
respectively, otherwise the optimization would diverge. Ob-
serving Table IV, we verify that the pre-processing using the
intensity normalization method by Nyúl et al. improved most
of the metrics, obtaining a mean gain of 4.6% (Leaderboard:
4.2%, Challenge: 4.9%). This improvement was specially
larger for LGG, indicating that the proposed pre-processing
increased the detection of the complete as well as the core
of the tumor, which is considered a difficult task [5]. Also,
comparing the drop in performance, when removing our pre-
processing, and the one verified when removing any other

5The learning rate was kept constant after 25 epochs; although the validation
error may fluctuate, we verified that it stabilized before 30 epochs, so, we
trained that amount of epochs and selected the one with the best validation
metrics.
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TABLE IV: Study of key components of the proposed method. In each test, just the referred component was modified in
the Proposed method. Results in bold represent metrics with p-value < 0.05 computed with the two-sided paired Wilcoxon
Signed-Rank Test when comparing the results with each component of the Proposed method in each grade, or combination of
grades; underlined results represent the one with the highest metric for each region in each grade, or combination of grades.

DSC PPV Sensitivity

Dataset Method Grade Complete Core Enhancing Complete Core Enhancing Complete Core Enhancing

Leaderboard

Proposed
HGG 0.88 0.76 0.73 0.91 0.90 0.72 0.86 0.74 0.81
LGG 0.65 0.53 0.00 0.54 0.42 0.00 0.86 0.86 0.00

Combined 0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68

Using pre-processing as in [19]
HGG 0.87 0.74 0.71 0.89 0.92 0.73 0.86 0.69 0.75
LGG 0.34 0.33 0.00 0.29 0.29 0.00 0.63 0.44 0.00

Combined 0.78 0.67 0.60 0.79 0.82 0.61 0.82 0.65 0.63

Using no training samples from HGG into LGG
HGG 0.88 0.76 0.73 0.91 0.90 0.72 0.86 0.74 0.81
LGG 0.46 0.34 0.00 0.37 0.27 0.00 0.71 0.63 0.00

Combined 0.81 0.69 0.62 0.82 0.80 0.60 0.84 0.72 0.68

Using no rotations
HGG 0.87 0.77 0.73 0.86 0.83 0.70 0.89 0.78 0.83
LGG 0.47 0.31 0.00 0.39 0.25 0.00 0.68 0.66 0.00

Combined 0.80 0.69 0.61 0.78 0.74 0.59 0.85 0.76 0.70

Random rotations (5.625◦)
HGG 0.87 0.77 0.74 0.92 0.89 0.76 0.84 0.76 0.79
LGG 0.62 0.49 0.00 0.49 0.38 0.00 0.91 0.87 0.00

Combined 0.83 0.72 0.62 0.85 0.81 0.64 0.85 0.78 0.66

Using ReLU
HGG 0.87 0.77 0.73 0.87 0.88 0.69 0.89 0.77 0.86
LGG 0.53 0.47 0.00 0.40 0.37 0.00 0.86 0.89 0.00

Combined 0.82 0.72 0.61 0.79 0.80 0.58 0.88 0.79 0.72

Large/small kernels 1
HGG 0.85 0.74 0.72 0.92 0.87 0.73 0.81 0.71 0.77
LGG 0.52 0.36 0.00 0.42 0.27 0.00 0.84 0.71 0.00

Combined 0.80 0.68 0.60 0.84 0.77 0.61 0.81 0.71 0.65

Large/small kernels 2
HGG 0.85 0.74 0.72 0.92 0.91 0.78 0.81 0.71 0.77
LGG 0.52 0.34 0.00 0.42 0.26 0.00 0.85 0.71 0.00

Combined 0.79 0.67 0.60 0.84 0.81 0.66 0.81 0.71 0.64

Coronal patches
HGG 0.86 0.75 0.72 0.88 0.83 0.74 0.86 0.74 0.76
LGG 0.59 0.44 0.00 0.46 0.34 0.00 0.92 0.86 0.00

Combined 0.82 0.70 0.61 0.81 0.75 0.62 0.87 0.76 0.64

Sagittal patches
HGG 0.86 0.75 0.71 0.86 0.79 0.70 0.87 0.78 0.79
LGG 0.45 0.32 0.00 0.36 0.26 0.00 0.87 0.70 0.00

Combined 0.79 0.68 0.60 0.78 0.70 0.59 0.87 0.76 0.66

Challenge

Proposed HGG 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81
Using pre-processing as in [19] HGG 0.80 0.78 0.73 0.75 0.86 0.71 0.92 0.74 0.77

Using no rotations HGG 0.85 0.79 0.74 0.81 0.78 0.70 0.91 0.86 0.82
Random rotations (5.625◦) HGG 0.88 0.82 0.76 0.90 0.84 0.76 0.86 0.84 0.78

Using ReLU HGG 0.86 0.81 0.74 0.82 0.80 0.66 0.90 0.85 0.86
Large kernels/shallow arq. 1 HGG 0.87 0.81 0.75 0.90 0.89 0.76 0.84 0.78 0.76
Large kernels/shallow arq. 2 HGG 0.87 0.81 0.75 0.90 0.88 0.75 0.84 0.78 0.76

Coronal patches HGG 0.85 0.81 0.74 0.81 0.85 0.75 0.90 0.79 0.75
Sagittal patches HGG 0.84 0.76 0.73 0.78 0.73 0.67 0.92 0.85 0.82

component, we verify that this pre-processing was the key
component for improving the segmention in LGG. The result
of this experiment in both grades is interesting, because we
know that the features learned by the CNN are computed
in local regions by a bank of band-pass filters at different
scales, instead of point-wise properties as an intensity. Shah
[37] presented a study regarding the segmentation of multiple
sclerosis based on MRI images, showing that classifiers based
on point-wise features, as intensity, improved after Nyúl
normalization. This improvement was obtained by minimizing
the data heterogeneity from multi-site multi-scanner MRI
acquisitions. However, our experiment gives evidence that in
MRI applications, CNN-based classifiers also improve after
Nyúl normalization, at least in the context of brain tumor seg-
mentation. Additionally, we further investigated the effect of
increasing the number of training epochs until 90 epochs, but
we obtained no improvement with the simpler pre-processing.
Referring to Fig. 4, we can observe that the proposed pre-
processing enabled a better training of the CNN, such that
the segmentation presented a better delineation of the non-
enhancing and the necrosis regions in both data sets.

b) Data Augmentation: Artificial data augmentation is a
common procedure in the context of CNN, when the data set is
relatively small. In the case of MRI images, we have a large
number of samples for healthy and tumorous tissue, which
may be the reason why most recent studies on brain tumor
segmentation based on Deep Learning [30], [31], [33] did not
explore data augmentation. Havaei et al. [32] considered its
application, but found to be ineffective in their system.

We investigated two types of data augmentation. In the first
case, we studied the effect of data augmentation by increasing
the number of samples using rotations. In this study, we
evaluated two variants. In the first, we used multiples of 90◦

(90◦, 180◦ and 270◦) for rotations (corresponding to the Pro-
posed method), while in the second, we sampled three rotation
angles from an array using an uniform distribution, whose
angles were equally spaced. The angle step was defined as
α×90◦ with α ∈{1/8, 1/16, 1/32}. In this second variant, we
consider α = 1/166. In Table IV, we present the results with
each variant and without rotations in both the Leaderboard

6The case α = 1/16 was the best result; the other results can be found in
the online Supplementary Material.
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Fig. 2: Boxplot for each of the experiments in Table IV in the Leaderboard data set. The boxplot for the experiment of
sampling training samples from HGG into LGG is not shown given the reduced number of subjects (4 LGG in 25 subjects for
the Leaderboard data set). The diamond marks the mean.

Fig. 3: Boxplot for each of the experiments in Table IV in the Challenge data set. The diamond marks the mean.

and Challenge data sets. As can be observed, the rotations
improved the performance in all regions for the DSC and
PPV; but, we also note a decrease in the sensitivity for both
variants in the Challenge data set. However, the mean gain
obtained by including rotations was 2.6% (Leaderboard: 2.6%,
Challenge: 2.7%) for the first variant (Proposed) and 2.3%
(Leaderboard: 2.7%, Challenge: 2.0%) for the second variant.
Comparing the two variants, we obtain a mean gain of 0.3% of
the first variant in relation to the second. Also, the first variant
has the advantage of being faster to compute. Observing Fig.

4, we conclude that the extra information provided by the
rotations of the first variant in training the CNN resulted in
segmentations with a better delineation of the complete tumor
as well as of the intra-tumoral structures. In both grades,
we have an excess of non-enhancing class, when we trained
without data augmentation, and for HGG this class is even
found inside the region formed by enhancing and necrotic
structures, which does not happen in the manual segmentation.

Brain tumors are constituted by intra-tumoral structures with
very different volumes, resulting in an imbalanced number
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(a)

(b)

Fig. 4: Examples of segmentations obtained with cross-validation, showing the effect of each component of the proposed
method. In the first row, we have a HGG, and in the bottom row a LGG. Each color represents a tumor class: green – edema,
blue – necrosis, yellow – non-enhancing tumor and red – enhancing tumor.

of samples of each class. This underrepresentation of some
classes impairs the performance of the CNN. So, we inves-
tigated a second type of data augmentation to balance the
number of samples of each class, which consisted in extracting
samples from necrosis and enhancing tumor regions in HGG
to use as training samples in LGG. In Table IV, we compare
the proposed approach, in which the number of samples of
each tumor class in LGG were more balanced, with another
experiment that uses only samples from LGG. We verify that
the extra samples from HGG improved all metrics for the
complete and core regions in the Leaderboard data set with
a mean gain of 1.9%. Examining Fig. 4(b), we note that by
sampling from HGG to LGG, we improved the training of
the CNN. Observe that the tumor segmentation presented a
better delineation of the enhancing and non-enhancing regions,
although the sampling was only for enhancing and necrosis
regions. The improvement of the non-enhaced region could
be explained by the context introduced by the patches of the
enhancing samples, since these two regions are next to each
other.

c) Activation Function: The gradients of ReLU are zero
when the unit is not active, which may slow down the
convergence during the optimization and lead to worst training.
To avoid that problem, Maas [43] proposed LReLU as an

alternative nonlinearity. So, we investigate the effectiveness
of this activation function in brain tumor segmentation. In this
experiment, only the activation function was changed in the
proposed method. The results in both the Leaderboard and
Challenge data sets are presented in Table IV. We verify that
LReLU activation improved the performance of the proposed
method in both data sets in the DSC and PPV, with the
exception of the core in the DSC in the Leaderboard data
set. ReLU activations presented better scores in the Sensitivity
metric. However, the mean gain using LReLU instead of ReLU
was 1.3% (Leaderboard: 0.44%, Challenge: 2.2%). Referring
to Fig. 4, we find that using ReLU as an activation function
resulted in an excessive segmentation of non-enhancing and
necrosis regions outside the core for HGG.

d) Deeper architectures/small kernels: Using cascaded
layers with small 3× 3 kernels has the advantage of main-
taining the same effective receptive field of bigger kernels,
while reducing the number of weights, and allowing more
non-linear transformations on the data. To evaluate the real
impact of this technique on brain tumor segmentation, we
changed the cascaded convolutional layers before each max-
pooling of the proposed architecture by one layer with larger
kernels with the equivalent effective receptive field. So, in
HGG we changed the groups of layers 1, 2, 3 and 5, 6, 7
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(Table I) by one convolutional layer with 7×7 kernels each,
while in the LGG we changed the groups of layers 1 and 2,
and 4 and 5 (Table II) by one layer with 5×5 kernels each.
Using these architectures, we experimented two variants for
both grades: 1) we maintained the 64 feature maps in the first
convolutional layer and 128 in the second; 2) we increased
the capacity of the CNN by using wider layers, namely, 128
feature maps in the first convolutional layer and 256 in the
second. We present the results obtained in the Leaderboard
and Challenge data sets in Table IV and the boxplots in Fig.
2 and 3. In relation to variant 1, the mean gain was 2.4%
(Leaderboard: 3.1%, Challenge: 1.6%), while for variant 2
it was 2.1% (Leaderboard: 2.4%, Challenge: 1.8%). In the
majority of metrics, the proposed method obtained higher
scores than both variants with bigger kernels, with some of
them with statistical significance, while the variants achieved
better scores in PPV (HGG in both data sets). In the boxplots,
both variants seem to have larger dispersion and more outliers.
In the segmentations of Fig. 4, although the segmentations by
the variants appear with good quality, the proposed method
can capture more details, and variant 2 classified some non-
enhanced tumor inside the enhancing ring, which does not
happen in the manual segmentation in HGG; in LGG the
architecture with bigger kernels also identified an excess of
non-enhancing tumor.

B. Patch Extraction Plane

The use of 2D patches in a MRI image requires that we
define a plane perpendicular to an axis to extract patches. So,
following the procedure defined in the previous subsection, we
investigated the use of patches extracted in a plane perpendic-
ular to the Axial, Coronal, and Sagittal axis. The results in
both the Leaderboard and Challenge data sets are presented
in Table IV. As can be observed, extracting patches in the
plane perpendicular to the Axial axis presented the best overall
performance with a mean gain of 2.33% relative to the Coronal
plane (Leaderboard: 1.89%, Challenge: 2.78%) and 4.00%
relative to the Sagittal plane (Leaderboard: 3.56%, Challenge:
4.44%). The Axial plane presented better DSC and PPV scores
for both data sets than the Sagittal plane, but worst sensitivity
for the Challenge data set and for the complete region in the
Leaderboard data set. Considering Fig. 4, this can be explained
by an over-segmentation of the tumor, which is corroborated
by the lower PPV score. A similar pattern is found for the
Coronal plane, which was better in the enhanced region for the
PPV score and in the complete region for the Sensitivity score.
The better performance obtained using patches extracted in
the Axial plane can be explained by some acquisitions having
lower spatial resolution in the Coronal and Sagittal planes,
which can be considered a limitation of the BRATS databases.

Finally, as an overall analysis, we note some general trends
across all experiments. Considering the boxplots, Fig. 2 and
3, we verify a lower dispersion for the complete region,
presenting also a higher mean value for the same region. This
lower dispersion is less expressive in the Leaderboard than in
the Challenge data set, which may be explained by the worst
performance of the algorithms on LGG subjects in this data

set. Another general trend is found in Table IV that shows
that none of the algorithms found presence of enhanced region
among the LGG subjects7.

C. Global Validation

In Table V, we compile the results of the top 5 methods
in the Leaderboard and Challenge data sets of BRATS 2013
(including the proposed method). We also include the propos-
als by Havaei et al. [32], Davy et al. [31], and Urban et al.
[30] that are based on CNN. Appraising the results in Table
V, we conclude that no method is yet able to achieve the first
place in all metrics and regions for brain tumor segmentation;
but, the proposed method obtained the first position in DSC in
the three regions (Challenge data set), according to the online
evaluation platform [47]. Also, based on the same evaluation,
the proposed method obtained the overall first position in both
data sets, outperforming the other methods.

Assessing the CNN-based methods, we observe that two of
those methods [30], [31] had modest performances, comparing
with others not based on CNN; however, the method proposed
by Havaei et al. [32] exhibit higher metrics. They propose
a novel and elaborated training and concatenation of two
CNNs to capture more context into the training. Contrasting
the two methods, while our method is better in Sensitivity,
their method is in PPV in the complete region. According
to Menze et al. [5], the most difficult tasks in brain tumor
segmentation are the segmentation of the core region for LGG
and the enhancing region for HGG. In these two tasks our
method outperformed Havaei et al. [32]. We note a larger
difference in the core region in the Challenge data, which is
considered an easier region to segment according to Menze et
al. [5]. Based on the analysis of the key components in the
previous section, we conclude that although our architecture
is simpler, those components permitted a better training of
our CNN classifier, compensating the lack of information of
a larger context, which according to the experiments reported
by Havaei et al. [32] was found to be relevant.

The method proposed by Kwon et al. [11] is ranked in
the second place in both data sets. They perform a joint
segmentation and registration using a tumor growth model to
transform an atlas of healthy patients into one with the tumor
and its intra-tumoral structures. Given the complex shape of
tumors, they refine the initial solution using the Expectation
Maximization algorithm. Comparing their approach with ours
in the Challenge data set (HGG tumors), our method obtained
higher DSC in the enhancing region and in Sensitivity in the
three regions, and their method was better in PPV in the
complete and core regions. For the Leaderboard data set (LGG
and HGG tumors), our method obtained higher metrics in the
enhancing region in DSC and Sensitivity, and their method
was better in the complete region in PPV and DSC, and in
the core region in the three metrics. Another strong contender
in the Leaderboard is the method proposed by Zhao [5]. His
method was better in the core region in DSC and outperformed
all methods in the complete and core regions in sensitivity;

7We currently are not able to confirm if these tumors contain enhanced
tumor, since the expert segmentation is private.
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TABLE V: Results in the Leaderboard and Challenge data sets of BRATS 2013. The relative rank refers to the combination of
the ranking in each metric for the referred class, while the position is the global ranking, as provided by the online evaluation
platform [47].

Methods DSC PPV Sensitivity Relative Rank Position
Complete Core Enh. Complete Core Enh. Complete Core Enh. Complete Core Enh.

L
ea

de
rb

oa
rd

Proposed 0.84 0.72 0.62 0.85 0.82 0.60 0.86 0.76 0.68 3.67 3.33 1.67 1
Kwon et al. [11] 0.86 0.79 0.59 0.88 0.84 0.60 0.86 0.81 0.63 3.33 1.67 5.00 2
Zhao et al.8 [5] 0.83 0.73 0.55 0.77 0.67 0.46 0.94 0.89 0.78 4.67 4.00 9.33 3
agnm19 0.83 0.71 0.54 0.85 0.73 0.59 0.84 0.82 0.58 6.00 4.33 10.33 4
havam29 0.82 0.69 0.56 0.83 0.77 0.62 0.83 0.69 0.58 7.67 7.00 8.00 5
Urban et al.9 [30] 0.70 0.57 0.54 0.65 0.55 0.52 0.87 0.67 0.60 14.00 18.67 12.33 17
Havaei et al.10 [32] 0.84 0.71 0.57 0.88 0.79 0.54 0.84 0.72 0.68 – – – –
Davy et al. [31] 0.72 0.63 0.56 0.69 0.64 0.50 0.82 0.68 0.68 – – – –

C
ha

lle
ng

e

Proposed 0.88 0.83 0.77 0.88 0.87 0.74 0.89 0.83 0.81 7.00 3.33 5.33 1
Kwon et al. [11], [52] 0.88 0.83 0.72 0.92 0.90 0.74 0.84 0.78 0.72 9.33 5.00 13.00 2
Tustison et al. [19] 0.87 0.78 0.74 0.85 0.74 0.69 0.89 0.88 0.83 10.33 11.67 9.00 3
havam29 0.88 0.78 0.73 0.89 0.79 0.68 0.87 0.79 0.80 8.33 10.67 13.33 4
al-ss19 0.87 0.78 0.70 0.89 0.83 0.75 0.86 0.78 0.70 9.67 8.67 14.67 5
Urban et al.8 [30] 0.86 0.75 0.73 0.82 0.75 0.79 0.92 0.79 0.70 11.67 16.00 11.67 12
Havaei et al. [32] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 – – – –
Davy et al. [31] 0.85 0.74 0.68 0.85 0.74 0.62 0.85 0.78 0.77 – – – –

8 Results retrieved from [47] using the cited method.
9 Results retrieved from [47], but the method or author are unknown.
10 Results provided by the author using the cited method.

however, since we note a significant drop in performance in
PPV in the same regions, we may infer that probably the
method by Zhao oversegmented the tumor. Also, we note
another trend, both our and Kwon methods drop from the
Challenge to the Leaderboard data set in most metrics (Kwon
improved in the complete and core regions in sensitivity);
however, appraising the separated metrics for HGG and LGG
in the Leaderboard, Table V, we observe that the performance
of our method was similar in the complete and enhanced
regions but dropped more significantly in the core region in
DSC and in sensitivity; therefore, given the lower metric of
LGG, we hypothesize that the general drop in both methods
from the Challenge data set to the Leaderboard was mainly due
to the LGG subjects; however, the method proposed by Kwon
dropped less in the core region. Considering the performance
in both data sets, we argue that both methods were similar
in segmenting the complete tumor, the method proposed by
Kwon was in general better in the core region and our method
in delineating the enhanced structure. Assessing the running
times, Kwon reports an average running time of 85 min. on
an Intel Core i7 3.4 GHz machine, while our full pipeline
presents an average running time of 8 min. using a GPU
NVIDIA GeForce GTX 980 equipped on an Intel Core i7 3.5
GHz machine. This difference in running times is explained by
our method performing an optimization only during training,
which permits a fast segmentation during normal use.

Considering the state of the art, we verify that current
CNN-based approaches [29]–[35] have used larger filters and
shallow architectures, with some using features computed by
the CNN as input to a RF [34], or employing the network
for structured prediction [35]. Also, these works did not
explore the stacking of several layers to apply more non-
linearities on the data, which we showed to be important. In the
CNN, these authors have used more common non-linearities,
as hyperbolic tangent or ReLU; however, our experiments

indicate that LReLU is a strong alternative to ReLU and do
not suffer of the limitations of the hyperbolic tangent [43].
Although some authors found no advantage in using data
augmentation [32], we have shown that data augmentation
and the adequate pre-processing have a significant impact on
performance. Based on these facts, our conclusion is that
the contributions in this article are orthogonal to current
state of the art, existing potential for further improvement in
brain tumor segmentation using MRI images by looking for
synergies with the techniques studied by current works.

In Fig. 5, we present the segmentation of two patients with
HGG and LGG, respectively, from the Leaderboard data set.
Fig. 6 shows a patient with two tumors that were correctly
detected and segmented from the Challenge data set.

Fig. 5: Examples of segmentations in the Leaderboard data set,
showing a HGG in the first row (subject id: 210) and a LGG
in the bottom row (subject id: 105). From left to right: T1,
T1c, T2, FLAIR, and the segmentation. Each color represents
a tumor class: green – edema, blue – necrosis, yellow – non-
enhancing tumor, and red – enhancing tumor.
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Fig. 6: Examples of segmentations in the Challenge data set
(subject id: 310). From left to right: T1, T1c, T2, FLAIR, and
the segmentation. Each color represents a tumor class: green
– edema, blue – necrosis, yellow – non-enhancing tumor, and
red – enhancing tumor.

D. Participation on BRATS 2015 Challenge

The proposed architecture was also used to segment the
BRATS 2015 Challenge data set. The differences when com-
paring with the models trained in BRATS 2013 were the
number of samples for training, given the bigger size of the
Training set, and in Dropout (p) that was increased to 0.5 in
the HGG architecture. In this data set, our method obtained
the second position with a DSC score of 0.78, 0.65, and
0.75 in the complete, core, and enhanced regions, respectively,
as computed by the BRATS organization; the boxplots are
presented in Fig. 7.

Fig. 7: Boxplots of DSC obtained in the Challenge set of
BRATS 2015. The diamond marks the mean.

V. CONCLUSIONS

In summary, we propose a novel CNN-based method for
segmentation of brain tumors in MRI images. We start by
a pre-processing stage consisting of bias field correction,
intensity and patch normalization. After that, during training,
the number of training patches is artificially augmented by
rotating the training patches, and using samples of HGG to
augment the number of rare LGG classes. The CNN is built
over convolutional layers with small 3× 3 kernels to allow
deeper architectures.

In designing our method, we address the heterogeneity
caused by multi-site multi-scanner acquisitions of MRI images
using intensity normalization as proposed by Nyúl et al. We
show that this is important in achieving a good segmentation.
Brain tumors are highly variable in their spatial localization
and structural composition, so we have investigated the use of
data augmentation to cope with such variability. We studied
augmenting our training data set by rotating the patches

as well as by sampling from classes of HGG that were
underrepresented in LGG. We found that data augmentation
was also quite effective, although not thoroughly explored in
Deep Learning methods for brain tumor segmentation. Also,
we investigated the potential of deep architectures through
small kernels by comparing our deep CNN with shallow archi-
tectures with larger filters. We found that shallow architectures
presented a lower performance, even when using a larger
number of feature maps. Finally, we verified that the activation
function LReLU was more important than ReLU in effectively
training our CNN.

We evaluated the proposed method in BRATS 2013 and
2015 databases. Concerning 2013 database, we were ranked in
the first position by the online evaluation platform. Also, it was
obtained simultaneously the first position in DSC metric in the
complete, core, and enhancing regions in the Challenge data
set. Comparing with the best generative model [11], we were
able to reduce the computation time approximately by ten-
fold. Concerning the 2015 database, we obtained the second
position among twelve contenders in the on-site challenge. We
argue, therefore, that the components that were studied have
potential to be incorporated in CNN-based methods and that
as a whole our method is a strong candidate for brain tumor
segmentation using MRI images.
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